Control – S-domain

Kelvin Leung, Ph.D. 09-13-2012

http://www.kskelvin.net

Laplace Transform

Laplace transform

- Laplace transform is named after Pierre-Simon Laplace, who introduced the transform in his work on probability therory.
- Laplace transform simplifies the process of analyzing the behavior of the system. In engineering applications, normally refer to sdomain, which corresponding to a linear time-invariant (LTI) system for system stability and dynamic analysis.
- Laplace transform definition

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

where $s = \sigma + j\omega$

Reference:

http://en.wikipedia.org/wiki/Lapla ce_transform Mathematical Relationship Commonly Used in Electronics $f(t) \leftrightarrow F(s)$ $\frac{df(t)}{dt} \leftrightarrow sF(s)$ $\int f(t)dt \leftrightarrow \frac{1}{s}F(s)$

Initial value theorem :

$$f(0^+) = \lim_{s \to \infty} sF(s)$$

Final value theorem :

 $f(\infty) = \lim_{s \to 0} sF(s)$

Example of Laplace Transform in electronics circuit

Example of RC Filter Question: Calculation Vo(s)/Vi(s)

$$(1): i_{R} = i_{C}$$

$$(2): i_{C} = C \frac{dv_{c}(t)}{dt} = C \frac{dv_{o}(t)}{dt}$$
For
$$v_{i}(t) = v_{R}(t) + v_{C}(t)$$

$$v_{i}(t) = i_{R}R + v_{o}(t)$$

$$v_{i}(t) = i_{C}R + v_{o}(t)$$

$$v_{i}(t) = CR \frac{dv_{o}(t)}{dt} + v_{o}(t)$$
Laplace Transform
$$V_{i}(s) = sCRV_{o}(s) + V_{o}(s)$$

$$\frac{V_{o}(s)}{V_{i}(s)} = \frac{1}{sCR + 1}$$

Question: Do we need to setup differential equation first???

S-domain representation for circuit element

Revisit RC example

Benefit: Simplify circuit analysis without differential equation!

What can we do with the s-domain transfer function

Example: RC Filter

 $\frac{V_o(s)}{V_i(s)} = \frac{1}{sCR+1} \rightarrow V_o(s) = \frac{1}{sCR+1}V_i(s)$

If input is assumed to be unit step, i.e. $V_s(t) = \frac{1}{s}$

Apply Inital value theorem :

$$f(0^+) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{s}{sCR+1} V_i(s)$$

$$f(0^{+}) = \lim_{s \to \infty} \frac{1}{sCR + 1} = \lim_{s \to \infty} \frac{1}{sCR + 1} = 0$$
A pply Final value theorem

Apply Final value theorem

$$f(\infty) = \lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{s}{sCR + 1} V_i(s)$$

$$f(\infty) = \lim_{s \to 0} \frac{s}{sCR + 1} \frac{1}{s} = \lim_{s \to 0} \frac{1}{sCR + 1} = 1$$

Input Test Signal and Corresponding Laplace s-domain

Function	Time domain $f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\}$	Laplace s-domain $F(s) = \mathcal{L} \left\{ f(t) \right\}$
unit impulse	$\delta(t)$	1
delayed impulse	$\delta(t- au)$	$e^{-\tau s}$
unit step	u(t)	$\frac{1}{s}$
delayed unit step	u(t- au)	$\frac{e^{-\tau s}}{s}$
ramp	$t \cdot u(t)$	$\frac{1}{s^2}$

Steady state output independent of C and R

Laplace transform can help to calculate the steady state response without solving complicated differential equation.

Benefit of s-domain

- In control theory, it well develop the understanding of 1st-order and 2st-order transfer function in s-domain. Therefore, without solving the equation, we can simply conclude the response of a system transfer function without solving the exact equation, and to design proper compensation network. This topic is discussed in another document
 - Control System Response.doc
 - Control Matlab and Control.doc

Homework – Question 1

Question 1

- Find system transfer function G(s)=Vo(s)/Vi(s)
- Use final value theorem to determine steady state value if unit step response is used.
- Assume R1=1k, R2=2k, C=1uF, use matlab to plot the step response and bode plot.
 - You will use matlab function
 - TF
 - STEP
 - BODE
 - Verify the step response with LTspice

Homework – Question 2

Question 2

- Calculate system transfer function G₁(s) and G₂(s).
- If G₁(s) and G₂(s) are connected in series (cascade), what is the new transfer function G_{overall}(s)?
- Explain why G_{overall}(s) is not same as answer of question 1.

Control – Block Diagram

Kelvin Leung, Ph.D. 09-20-2012

http://www.kskelvin.net

Block Diagram

Close Loop Transfer Function $\frac{V_{out}}{V_{in}}$ Eqn 1: $V_{out} = G(s) \cdot V_{error}$ Eqn 2: $V_f = H(s) \cdot V_{out}$ By $V_{error} = V_{in} - V_f$ $\frac{V_{out}}{G(s)} = V_{in} - H(s) \cdot V_{out}$ $V_{in} = \left(\frac{1}{G(s)} + H(s)\right) V_{out} = \frac{1 + G(s)H(s)}{G(s)} \cdot V_{out}$ $\frac{V_{out}}{V_{in}} = \frac{G(s)}{1 + G(s)H(s)}$

Open Loop Transfer Function
$$\frac{V_f}{V_{in}}$$

 $\frac{V_f}{V_{in}} = G(s)H(s)$

Close-Loop Transfer Function

Numeral Example

Assume system transfer function called *T*(*s*)

Howework #1

- Question
 - Use matlab to calculate the system transfer function T(s).
 - You will use matlab function
 - TF
 - FEEDBACK
 - Use matlab to plot the step response of G(s) and T(s).

Homework #2

- Question
 - Assume

$$G(s) = \frac{1}{s+2}, \ H(s) = 1, K = 10$$

- Calculate T(s) with matlab.
- Plot step response of G(s) and T(s).
 - What is the steady state value of T(s) in step response plot?
 - If K = 100, what is the new steady state value of T(s)?
 - What if the function of K?

Howework #3

- Question
 - Assume

$$G(s) = \frac{1}{s+2}, H(s) = 1, K = 10$$

- Calculate T(s) with matlab.
- Plot step response of G(s) and T(s).
 - What is the steady state value of T(s) in step response plot?
 - Change K to observe T(s) step response.
 - What if the function of s⁻¹ in this system?
- In next slide, design opamp compensation network in LTspice for this circuit. Use ans_blank.asc as template.

Homework #3

Control – 1st-order and 2nd-order system response

Kelvin Leung, Ph.D. 09-25-2012

http://www.kskelvin.net

1st-order System Step Response

Assume 1st-order system as

$$G(s) = \frac{p}{s+p}$$

Pole is defined as the root of system denominator = 0

• i.e.
$$s + p = 0 \rightarrow s = -p$$

- Observation
 - A less negative pole gives a slower system.
 - A positive pole gives an unstable system.
 - System Time-Constant = 1/p.
 - Time to achieve ~63% of output

2nd-order System Step Response

- Assume 2nd-order system as $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
- Pole is defined as the root of system denominator = 0
 - i.e. $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$
- Zeta (ζ) Observation
 - ζ is damping ratio which affect overshoot and ringing.
 - ζ ~ 0.7 can minimize overshoot but maintain system speed
- **D** Omega (ω_n) Observation
 - ω_n is natural frequency which affect system speed.
 - Changing ω_n doesn't affect overshoot or undershoot magnitude.

System Simplification

Assume 4th - order system

$$T(s) = \frac{1}{s^4 + 42s^3 + 483s^2 + 882s + 802}$$

With the help of matlab "zpk"
$$T(s) = \frac{1}{802} \cdot \frac{401}{s^2 + 40s + 401} \cdot \frac{2}{s^2 + 2s + 2}$$

Approximation 1
$$T_1(s) = \frac{1}{802} \frac{401}{s^2 + 40s + 401}$$

$$\omega_{n1} = \sqrt{401} \approx 20, \zeta_1 = 0.999$$

Approximation 2
$$T_2(s) = \frac{1}{802} \frac{2}{s^2 + 2s + 2}$$

$$\omega_{n2} = \sqrt{2} \approx 1.414, \zeta_2 = 0.707$$

As $\omega_{n2} \ll \omega_{n1}$, $T_2(s)$ can be used as approximation.

Smaller value represents slower system

Homework 1

 Simplify the 5-th order system T(s)

What is the purpose of System Simplification and the understanding of 1st and 2nd order system response?

Root-Locus Method

Kelvin Leung, Ph.D. 10-18-2012

http://www.kskelvin.net

Fundamental of Root Locus

Close - loop system is defined as,

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

where open - loop system is G(s)H(s)

Assume
$$G(s) = \frac{num_G}{den_G}$$
 and $H(s) = \frac{num_H}{den_H}$
Poles of $T(s)$ is the root of eqn $1 + KG(s)H(s) = 0$
 $\therefore 1 + K \frac{num_G}{den_H} = 0$

$$den_G \quad den_H$$

$$\therefore den_G den_H + K \cdot num_G num_H = 0$$

If $K = 0 \Rightarrow den_G den_H = 0$

therefore, open - loop system poles are close - loop system poles at K = 0

If
$$K \to \infty \Longrightarrow num_G num_H = \lim_{K \to \infty} \frac{-den_G den_H}{K} = 0$$

therefore, open - loop system zeros are close - loop system poles at $K \rightarrow \infty$

Therefore, determine the trajectories of 1 + KG(s)H(s) = 0 for K = 0 to ∞ is the locus of close - loop system poles.

Remark: Poles of G(s)H(s) can force $den_G=0$ or $den_H=0$ Zeros of G(s)H(s) can force $num_G=0$ or $num_H=0$

Root Locus: Trajectories of Close-Loop System Poles

Matlab of Root Locus

Matlab Code

% define the open-loop system as $G = (-0.5s+1)/(s^2+s)$

num=[-0.5 1]; den=[1 1 0]; G = tf(num,den);

% calculate pole and zero of close-loop systems K = 0.647;

```
T = feedback(K*G,1);
```

[p,z]=pzmap(T);

plot(real(p),imag(p),'rd'); hold on;

Calculate Close - Loop Transfer Function as $T = \frac{KG(s)}{1 + KG(s)}$

% plot root-locus of open-loop systems
rlocus(G)
title('Root Locus of Open-Loop Systems G = (0.5s+1)/(s^2+s)');

Prove from this matlab routine: rlocus plots the root locus of open-loop system, which represents the locus of poles of close-loop system with K from 0 to INF.

Root Locus Plot (sgrid)

System dynamic design criteria

$$\omega_n$$
 is natural frequency
 ζ is damping ratio
where $\sigma = \omega_n \zeta$, $\omega_d = \omega_n \sqrt{1 - \zeta^2}$
Settling time (t_s)
2% criterion : $t_s = 4T = \frac{4}{\sigma} = \frac{4}{\omega_n \zeta}$
5% criterion : $t_s = 3T = \frac{3}{\sigma} = \frac{3}{\omega_n \zeta}$

Maximum overshoot (M_p)

$$M_p = e^{-\frac{\sigma}{\omega_d}\pi} = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi}$$

marker and search for zeta = 0.7

Constant & Lines and Constant @_ Circles

Design with Root-Locus Method

Matlab Code

Design with Root-Locus Method (Improve response with addition zeros)

Design of compensator

- Reference
 - P.310 of Modern Control Engineering (5th Edition), Katsuhiko Ogata.
- Effects of the addition of poles
 - Pulling the root locus to the right, tending to lower the system's relative stability and to slow down the settling of the response.
- Effects of the addition of zeros
 - Pulling the root locus to the left, tending to make the system more stable and to speed up the settling of the response.
- Matlab example
 - Based on previous design, we add a compensator with zero = -6.

System with addition zero $G_c(s)$ G(s) \downarrow \downarrow K S+6 \downarrow 1 s(s+5)(s+10) \downarrow f(s+10)

Design with Root-Locus Method (Improve response with addition zeros)

Design with Root-Locus Method (Improve response with addition zeros)

Matlab Code

% define the open-loop system as G(s) z=[]; p=[0 -5 -10]; k=1; G = zpk(z,p,k);

% compensator transfer function Gc(s) num=[1 6]; den=[1]; Gc = tf(num,den);

% form close-loop systems T(s) K = 36.6; T = feedback(K*Gc*G,1);

% plot step response of close-loop system figure; step(T);

04

0.6

6 0.8 Time (sec) 12

14

Exercise #1

Exercise #1

- Use matlab to determine the gain K and time constant T of the controller Gc(s) such that the closedloop poles are located at s=-2+/-j2.
 - Hint: T can be determined by trial and error method in matlab.

Rules for Constructing Root Locus

Kelvin Leung, Ph.D. 10-19-2012

http://www.kskelvin.net

Rules for Constructing Root Loci

Reference

- P.283-287, "Modern Control Engineering", Fifth Edition, Katsuhiko Ogata
- The construction rules in this ppt follows the Ogata textbook.

```
Root Locus is the root trajectory of Characteristic Equation

den_G den_H + K \cdot num_G num_H = 0

or

1 + K \cdot G(s)H(s) = 0

or represented in general form

B(s) + K \cdot A(s) = 0

where

roots of A(s) = 0 are open - loop system zeros

roots of B(s) = 0 are open - loop system poles

Therefore, root locus can apply for any system which re - write to this general form.
```

Rule #1

- Locate the poles and zeros of G(s)H(s) on the s plane.
 - Root-locus branches start from open-loop poles and terminate at zeros (finite zeros or zeros at infinity)
 - Assume
 - Number of poles = n
 - Number of zeros = m
 - If n>m, then system has n-m infinity zeros
 - If n<m, then system has m-n infinity poles
 - If n=m, then system has no infinity poles or zeros.

Rule #2

- Determine the root loci on the real axis
 - Put a test point on the real axis,
 - If the total poles and zeros to the right of this test point is odd, then this point lies on the root locus, otherwise, point doesn't lies on the root locus.

Rule #2 (examples)

Determine the asymptotes of root loci

Angles of asymptotes = $\frac{\pm 180^{\circ}(2k+1)}{n-m}$ (k = 0,1,2,...)

where

n = number of finite poles of G(s)H(s)

m = number of finite zeros of G(s)H(s)

If open - loop system is
$$G(s)H(s) = \frac{\prod(s+z_n)}{\prod(s+p_n)}$$

Intersection of asymptotes

$$s_{\text{intersection}} = -\frac{\sum p_n - \sum z_n}{n - m}$$

Caution p_n and z_n not poles and zeros For example, if poles are -1, -2, p_1 =1, p_2 =2 $(s+p_1)(s+p_2)$

n = 3, m = 0

 $S_{\text{intersection}}$

angles of asymptotes = $\frac{\pm 180^{\circ}(2k+1)}{3}$

n-m

$$n = 2, m = 0$$

angles of asymptotes = $\frac{\pm 180^{\circ}(2k+1)}{2} = \pm 90^{\circ}(2k+1) = \pm 90^{\circ}, \pm 180^{\circ}$
$$s_{intersection} = -\frac{\sum p_n - \sum z_n}{n-m} = -\frac{(0+10)-0}{2} = -5$$

$$poles = 0, -10$$

$$poles = 0, -10$$

$$\frac{poles = 0, -10}{-10}$$

$$\frac{poles = 0, -10}{-10}$$

$$\frac{poles = -2, -2, -5}{-10}$$

$$ros$$

$$i = 1, p_2 = 2$$

$$nptotes = \frac{\pm 180^{\circ}(2k+1)}{3} = \pm 60^{\circ}(2k+1) = \pm 60^{\circ}, \pm 180^{\circ}$$

$$\frac{\sum p - \sum z}{2} = -\frac{(2+2+5)-0}{2} = -3$$

Find the breakaway and break-in points

Identify the characteristic equation in this format $B(s) + K \cdot A(s) = 0$

Breakaway or Break - in points are the roots of

$$\frac{dK}{ds} = -\frac{A(s)\frac{dB(s)}{ds} - B(s)\frac{dA(s)}{ds}}{(A(s))^2} = 0$$
$$\therefore A(s)\frac{dB(s)}{ds} - B(s)\frac{dA(s)}{ds} = 0$$

A actual breakaway or break - in point can obtain K as a positive number by substitute that s (root of $\frac{dK}{ds} = 0$) into characteristic equation.

Assume Open - Loop system

$$G(s)H(s) = \frac{s+15}{s(s+10)} = \frac{s+15}{s^2+10s}$$

: Characteristic equation is

1+K ⋅ G(s)H(s) = 0 ⇒ 1+K
$$\frac{s+15}{s^2+10s}$$
 = 0
∴ (s²+10s)+K(s+15)=0
where A(s) = s+15, B(s) = s²+10s

Breakaway or break - in points

By
$$\frac{dK}{ds} = -\frac{A(s)\frac{dB(s)}{ds} - B(s)\frac{dA(s)}{ds}}{(A(s))^2} = 0$$

⇒ $A(s)\frac{dB(s)}{ds} - B(s)\frac{dA(s)}{ds} = 0$
⇒ $(s+15)\frac{d(s^2+10s)}{ds} - (s^2+10s)\frac{d(s+15)}{ds} = 0$
⇒ $(s+15)(2s+10) - (s^2+10s)(1) = 0$
⇒ $s^2 + 30s + 150 = 0$
∴ $s = -6.34$ or $s = -23.66$

poles = 0, -10; zeros = -15 10 8 6 4 2 Imaginary Axis -23.66 -6.34 0 System: sys System: sys Gain: 37.3 Gain: 2.68 -2 Pole: -23.7 Pole: -6.34 Damping: 1 Damping: 1 -4 Overshoot (%): 0 Overshoot (%): 0 Frequency (rad/sec): 23.7 Frequency (rad/sec): 6.34 -6 -8 -10 L -30 -25 -20 -15 -10 10 -5 0 5 Real Axis

Put s = -6.34 into $(s^2 + 10s) + K(s + 15) = 0 \implies K = 2.68$ Put s = -23.66 into $(s^2 + 10s) + K(s + 15) = 0 \implies K = 37.32$

- Determine the angle of departure (angle of arrival) of the root locus from a complex pole (at a complex zero)
 - Angle of departure from a complex pole = 180°
 - (sum of the angles of vectors to a complex pole in question from other poles)
 - + (sum of the angles of vectors to a complex pole in question from zeros)
 - Angle of arrival at a complex zero = 180°
 - (sum of the angles of vectors to a complex zero in question from other zeros)
 - + (sum of the angles of vectors to a complex zero in question from poles)

Rule #5 (example)

Open-Loop Pole-Zero Configurations and the Corresponding Root Loci

Open-Loop Pole-Zero Configurations and the Corresponding Root Loci

Example of compensating a system with addition zeros

Example of compensating an unstable system

Frequency Response Method - Bode Plot

Kelvin Leung, Ph.D. 10-22-2012

http://www.kskelvin.net

Bode Plot

Bode Plot

- Presenting frequencyresponse characteristics in graphical forms.
- Plot of Logarithm of the magnitude of a sinusoidal transfer function
- Plot of phase angle
- Against the frequency on a logarithmic scale.

System transfer function G(s)Substitute $s = j\omega = j2\pi f$ G(s) can be expressed as $G(j\omega) = |G(j\omega)| \angle G(j\omega)$

Logarithm Magnitude $|G(j\omega)|_{dB} = 20 \log (|G(j\omega)|)$

Typical Bode Plot, GH=1/s

Bode Plot of $G(s)H(s) = \frac{1}{s}$ Substitute $s = j\omega$ $G(j\omega)H(j\omega) = \frac{1}{j\omega}$

Typical Bode Plot, GH=s

Bode Plot of G(s)H(s) = sSubstitute $s = j\omega$ $G(j\omega)H(j\omega) = j\omega$

Typical Bode Plot, GH=a/(s+a)

Bode Plot of

$$G(s)H(s) = \frac{a}{s+a}$$

Substitute $s = j\omega$

$$G(j\omega)H(j\omega) = \frac{a}{j\omega + a}$$

Typical Bode Plot, GH=(s+a)/a

Bode Plot of $G(s)H(s) = \frac{s+a}{a}$ Substitute $s = j\omega$ $G(j\omega)H(j\omega) = \frac{j\omega+a}{a}$

Typical Bode Plot, Second-order

Bode Plot of $G(s)H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ Substitute $s = j\omega$ $G(j\omega)H(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2}$

This example: $\omega_n = 1$, $\zeta = 0.7$

Example 1: Construct of Bode Plot

Bode Diagram of G(s)H(s) dcgain=20dB 20 20dB/decade pole=-Magnitude(dB) pole=-10 -40dB/decade -20 Plot the Bode Plot of G(s)H(s)-4($G(s)H(s) = \frac{s+100}{(s+1)(s+10)}$ zero=-100 -20dB/decade -8(10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 104 Re - write the G(s)H(s) into standard form Frequency (b) $G(s)H(s) = \frac{100}{1 \cdot 10} \frac{1}{s+1} \frac{10}{s+10} \frac{s+100}{100}$ 180 Phase(deg) 90 $G(s)H(s) = 10 \cdot \frac{1}{s+1} \frac{10}{s+10} \frac{s+100}{100}$ +45°/decade -9(-45°/decade 90°/decade -180 10° 10^{3} 10^{-2} 10^{-1} 10^{2} 104 10 Frequency (b) dcgain = 10dcgain(dB) = 20*log(dcgain)=20dB

Example 2: Construct of Bode Plot

Frequency Response Method - Nyquist Plot

Kelvin Leung, Ph.D. 10-22-2012

http://www.kskelvin.net

Nyquist Plot

Introduction

- Bode plot and Nyquist plot are commonly used in the frequencyresponse representation of LTI (Linear Time Invariant) feedback control systems.
 - Bode plot is rectangular plot
 - Nyquist plot is polar plot
 - Includes the loci for both ω>0 and ω<0.

Bode and Polar plots

Real Axis

bode_nyquist_polar.m

Special Point in Nyquist Plot

□ Point: -1+j0

- Magnitude = 1 = 0dB
- Phase = -180°
- In Bode plot, for a stable system
 - Condition 1
 - If G(s)H(s) doesn't have right half plane poles
 - Condition 2
 - |G(s)H(s)| <0dB when Phase = -180o. Therefore, this point is critical in Nyquist plot.

Stability Analysis of Nyquist plot

Reference

 Page 454, "Modern Control Engineering (5th Edition)", Katsuhiko Ogata.

Rules

- There is no encirclement of the -1+j0 point. This implies that the system is stable if there are no poles of G(s)H(s) in the right-half s plane; otherwise, the system is unstable.
- 2. There are one or more counterclockwise encirclements of the -1+j0 point. In this case the system is stable if the number of counterclockwise encirclements is the same as the number of poles of G(s)H(s) in the righthalf s plane; otherwise, the system is unstable.
- 3. There are one or more clockwise encirclements of the -1+j0 point. In this case the system is unstable.

Rule #1, Stable System (no encirclement of -1+j0)

Rule #1, Unstable System (no encirclement of -1+j0)

Rule #2, Stable System (counterclockwise encirclement of -1+j0)

2 RHP poles

Rule #2, Unstable System (counterclockwise encirclement of -1+j0)

2 RHP poles

Rule #3, Unstable System (clockwise encirclement of -1+j0)

Appendix Standard G(s)H(s) Bode and Nyquist Plots

 $G(s)H(s) = \frac{1}{s}$

G(s)H(s) = s

 $G(s)H(s) = \frac{1}{s+1}$

G(s)H(s) = s + 1

2 \mathcal{O}_n $\frac{1}{2}$ where $\omega_n = 1, \zeta = 0.7$ G(s)H(s) = $\overline{s^2 + 2\zeta\omega_n s + \omega_n}$

Gain and Phase Margins

Kelvin Leung, Ph.D. 10-22-2012

http://www.kskelvin.net

Gain and Phase Margins Definition in Bode and Nyquist plots (stable)

Gain and Phase Margins Definition in Bode and Nyquist plots (unstable)

Relationship between open-loop and close-loop response

- **D** Natural frequency (ω_n)
 - ω_n in closed-loop system is somewhere between the gain crossover frequency and phase crossover frequency in open-loop system.
 - page. 473-474 of "Modern Control Engineering", Ogata, 5th Edition
 - A very rough estimate is that the bandwidth (freq @ -3dB) is approximately equal to the natural frequency.
 - [http://www.engin.umich.edu/class/ctms/freq/freq.htm]
- **D** Damping ratio (ζ)
 - Phase margin in open-loop system has linear relationship with $\boldsymbol{\zeta}$ of closed-loop system
 - Exact Formula

Phase margin (γ) and Damping Factor (ζ)

$$\gamma = \tan^{-1} \frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}}$$

• Approximation: for $\zeta < 0.6$, $\zeta = 0.01$ Pm

Design with Bode Plot

Design criteria

- Bode plot can only be used to design close-loop feedback from stable open-loop system (i.e. G(s)H(s) doesn't has RHP poles), otherwise, Nyquist or Root-Locus need to be used.
 - Reason: Refer to stability rule #1 in Nyquist plot powerpoint.
- System performance
 - DC Gain
 - Determine the steady state error
 - Increase of DC Gain, Decrease of Steady State Error
 - Phase margin
 - Determine the damping ratio and overshoot.
 - Phase margin is normally selected to between 30°-60°.
 - **Gain margin**
 - Determine the robustness of system. Normally > 6dB.
 - To guarantee stability even if the open-loop gain and time constants of the components vary to a certain extend.
 - Gain/Phase crossover frequency
 - Determine the transient response speed.
 - Increase the crossover frequency, Increase transient speed.

Stability of multiple phase crossover frequencies system

Stability of multiple phase crossover

Bode plot shows a system which has multiple phase crossover at 180°

Root locus shows that there are 2 region of gain K which can give stable system

0

2000

400

Therefore, root locus actually indicate "second" phase crossover can be used to generate a stable system

Stability of multiple phase crossover

Stability of multiple phase crossover

-2000

Ó

Stable Case: Low Gain

Unstable Case: Middle Gain

Gain crossover

Stability of multiple gain crossover frequencies system

Stability of multiple gain crossover

Phase margin is measured at the highest gain crossover frequency

Design with Lead or Lag Compensator

Kelvin Leung, Ph.D. 10-19-2012

http://www.kskelvin.net

Lead and Lag Compensator Definitation

Lead Compensator zero dominate Lead Compensator (Poles Zeros Map) Step Response 0.5 Imaginary Axis Amplitude 0.5 -0.5 -150 -100 0.02 0.04 -50 0 50 0 0.06 Real Axis Time (sec) Bode Diagram Phase (deg)Magnitude (dB) $G_C(s) = \frac{s+z}{s+p}$ -10 -20 90 where p > z45 10^{0} 10^{2} 10^{4} Frequency (rad/sec) Add +ve phase Application: Speed up system response

Lag Compensator

Design with lead compensator

Example of system compensation with lead compensator – root locus

Example of system compensation with lead compensator – bode plot

Consideration

- 1. To improve the speed, we need to boost the gain for higher crossover frequency
- 2. However, if we only boost up the gain, phase margin reduce.
- 3. Lead compensator can boost up the gain and phase.
- 4. Therefore, crossover frequency increased without changing phase margin

Remark:

- crossover frequency related to wn. Wn is somewhere between gain crossover freq and phase crossover freq.
- phase margin related to zeta

Design with lag compensator

Example of system compensation with lag compensator – root locus

Example of system compensation with lag compensator – bode plot

Consideration

- 1. To improve steady state response (ramp input) but avoid changing system dynamic, we need to boost the gain at low frequency without changing crossover frequency and phase margin
- 2. By properly select the Lag compensator, it can increase the gain at low frequency without affecting the phase near crossover frequency.
- 3. Therefore, low frequency gain increased without changing crossover characteristic.

Analog to Digital Implementation

Kelvin Leung, Ph.D. 24-10-2012

http://www.kskelvin.net

Analog to Digital Implementation

Purpose

- This ppt is intended to show the procedure of transforming an analog system into digital implementation with the help of matlab.
- Theory of digital control is not the target of this ppt.
- By following this ppt, you can convert your analog compensator into a digital formula and implement it in a digital processor.

Concept of Sampling

- Concept of Sampling
 - In digital controller, ADC (analog-to-digital converter) and DAC (digital-to-analog converter) are used. ADC and DAC are not continuous device but discrete time sampling input or output.
 - Sampling frequency is determined by designer. This is an important parameters to interface the analog and digital system.
- Concept of Z-transform
 - S-domain transfer function can be converts into z-domain through z-transform.
 - In z-transform, we need to remember time-shifting property

$$x[n-k] = z^{-k}X(z)$$

2nd-order transfer function example (analog transfer function)

Assume we design a compensator G_c(s) and need to implement with a digital controller

$$G_C(s) = \frac{V_{ctrl}(s)}{V_{error}(s)} = \frac{1}{s^2 + 1.4s + 1}$$

In matlab,

- % define a 2-nd order analog system
- wn=1;
- zeta=0.7;
- num=[wn.^2];
- den=[1 2*wn*zeta wn^2];
- G=tf(num,den)

Define the analog transfer function

2nd-order transfer function example (convert to digital transfer function)

In matlab

- % convert the analog system to digital system Sampling time
- Gz=c2d(G,0.2)⁻
- % form of Gz digital implementation
- M = idpoly(Gz)
- % plot the step response of analog and digital system
- step(G); hold on; step(Gz); hold on;
- legend('G(s)','Gz(s)');

Transfer function:
0.0182 z + 0.01657
z^2 - 1.721 z + 0.7558
Sampling time: 0.2

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)B(q) = 0.0182 q^-1 + 0.01657 q^-2

```
F(q) = 1 - 1.721 q^{-1} + 0.7558 q^{-2}
```

This model was not estimated from data. Sampling interval: 0.2

2nd-order transfer function example (digital formula from transfer function)

Method #1

Discrete - time transfer function

$$G_{C}(z) = \frac{v_{ctrl}(z)}{v_{error}(z)} = \frac{0.0182z + 0.01657}{z^{2} - 1.721z + 0.7558}$$
$$G_{C}(z) = \frac{0.0182z + 0.01657}{z^{2} - 1.721z + 0.7558} \frac{z^{-2}}{z^{-2}} = \frac{0.0182z^{-1} + 0.01657z^{-2}}{1 - 1.721z^{-1} + 0.7558z^{-2}}$$

Therefore,

$$\begin{aligned} v_{ctrl}(z) &-1.721z^{-1}v_{ctrl}(z) + 0.7558z^{-2}v_{ctrl}(z) = 0.0182z^{-1}v_{error}(z) + 0.01657z^{-2}v_{error}(z) \\ v_{ctrl}(z) &= 0.0182(z^{-1}v_{error}(z)) + 0.01657(z^{-2}v_{error}(z)) + 1.721(z^{-1}v_{ctrl}(z)) - 0.7558(z^{-2}v_{ctrl}(z)) \\ v_{ctrl}[n] &= 0.0182v_{error}[n-1] + 0.01657v_{error}[n-2] + 1.721v_{ctrl}[n-1] - 0.7558v_{ctrl}[n-2] \end{aligned}$$

Apply time shifting property

$$x[n-k] = z^{-k}X(z)$$

Transfer function: 0.0182 z + 0.01657 z^2 - 1.721 z + 0.7558 Sampling time: 0.2

2nd-order transfer function example (digital formula from IDPOLY)

Method #2

Rewrite discrete - time IDPOLY as

$$y(t) = \frac{0.0182q^{-1} + 0.01657q^{-2}}{1 - 1.721q^{-1} + 0.7558q^{-2}}u(t)$$

where
$$y(t) \rightarrow y(k), u(t) \rightarrow u(k), q \rightarrow z$$

$$y(k) = \frac{0.0182z^{-1} + 0.01657z^{-2}}{1 - 1.721z^{-1} + 0.7558z^{-2}}u(k)$$

$$y(k) = 0.0182z^{-1}u(k) + 0.01657z^{-2}u(k) + 1.721z^{-1}y(k) - 0.7558z^{-2}y(k)$$

$$y(k) = 0.0182(z^{-1}u(k)) + 0.01657(z^{-2}u(k)) + 1.721(z^{-1}y(k)) - 0.7558(z^{-2}y(k))$$

$$y[n] = 0.0182u[n-1] + 0.01657u[n-2] + 1.721y[n-1] - 0.7558y[n-2]$$
Apply time shifting property
$$x[n-k] = z^{-k}X(z)$$

As output $y = v_{ctrl}$ and input $u = v_{error}$ $v_{ctrl}[n] = 0.0182v_{error}[n-1] + 0.01657v_{error}[n-2] + 1.721v_{ctrl}[n-1] - 0.7558v_{ctrl}[n-2]$

> Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t) $B(q) = 0.0182 q^{-1} + 0.01657 q^{-2}$ $F(q) = 1 - 1.721 q^{-1} + 0.7558 q^{-2}$ This model was not estimated from data. Sampling interval: 0.2

Formula Impementation in Matlab

Matlab Implementation

```
% time vector
t=[0:0.2:12];
               % sampling Tsampling is 0.2s
% initialization
error0=1; % error[n]
error1=0; % error[n-1]
error2=0; % error[n-2]
                             Initialization = 0
ctrl1=0; % ctrl[n-1]
ctrl2=0; % ctrl[n-2]
for i=1:length(t)
  % digital implementation of Gc(z)
  ctrl0(i)=0.0182*error1+0.01657*error2+1.721*ctrl1-
    0.7558*ctrl2:
                     Calcuate Vctrl[n]
  % store time delay data for next calculation
  error2=error1;
  error1=error0;
```

error=1; % 1=step response; 0=impulse response
ctrl2=ctrl1;
ctrl1=ctrl0(i);
end

figure;

% plot the step response of analog and digital system step(G); hold on; step(Gz); hold on; % plot the response of digital implementation plot(t,ctrl0,'ro'); hold on; legend('G(s)','Gz(s)','Digital Implementation');

